
N1GE6 Checkpointing and Berkeley Lab
Checkpoint/Restart

Liang PENG
Lip Kian NG

N1GE6 Checkpointing and Berkeley Lab
Checkpoint/Restart

Liang PENG
Lip Kian NG

APSTC-TB-2004-005
Abstract:

N1GE6, formerly known as Sun Grid Engine, is widely used in HPTC environment for
efficient utilization of compute resources. As applications in such environment are
generally compute intensive, fault tolerance is required to minimize the impact of
hardware failure. N1GE6 has several fault tolerance features and in this report, the
focus will be on the checkpointing support and the integration of Berkeley Lab
Checkpoint/Restart will be used as an example.

Keywords: checkpoint, Grid Engine, blcr

Email Address:
pengliang@apstc.sun.com.sg

lkng@apstc.sun.com.sg

Revision History
Version Date Comments

1.1 Jul 14, 2004

1.2 Dec 28, 2004 Feedback from Reuti (reuti__at__staff.uni-marburg.de)

• Transparent interface is user-level (Table 1).

• Update to state diagram (Illustration 2).

N1GE6 Checkpointing and Berkeley Lab
Checkpoint/Restart

Liang PENG
Lip Kian NG

Asia Pacific Science and Technology Center
Sun Microsystems Pte Ltd, Singapore

Introduction
Checkpointing is the process of writing out the state information of a running application to
physical storage periodically. With this feature, an application will be able to restart from the
last checkpointed state instead of from the beginning which would have been computationally
expensive in HPTC environment.

In general, checkpointing tools can be classified into 2 different classes:

• Kernel-level

– Such tools are built into the kernel of the operating system. During a checkpoint, the
entire process space (which tends to be huge) is written to physical storage.

– The user does not need to recompile/re-link their applications.

– Checkpointing and restarting of application is usually done through OS commands.

– Checkpointed application is usually unable to be restarted on a different host.

• User-level

– These “tools” are built into the application which will periodically write their status
information into physical storage.

– Checkpointing of such applications is usually done by sending a specific signal to the
application.

– Restarting of such applications is usually done by calling the application with additional
parameters pointing to the location of restart files.

N1 Grid Engine (N1GE6) Checkpointing and Migration Support 1
N1GE6 has built-in support for the integration of 3rd party checkpointing tools. Certain
checkpointing tools (mostly user-level) allow the restart of applications on different hosts.
These tools, coupled with the migration support on the N1GE6 and with proper configuration
of the queue threshold levels, allows the administrator to finely load balance the N1GE6
cluster.

The following sections will show the checkpoint and migrate support on the N1GE6.

Illustration 1 shows the N1GE6 checkpoint configuration menu.

Interface 6 different interfaces are available and these will determine which
of the following commands are used. (See Table 1)

Checkpoint Command Path to script which will be executed by N1GE6 to initiate a
checkpoint.

Migration Command Path to script which will be executed by N1GE6 to initiate a
migration.

Restart Command Path to script which will be executed by N1GE6 to restart the job.

Clean Command Path to script which will be executed to initiate the cleaning up of a
checkpoint job. (Eg. Deletion of restart files)

1 N1GE6 does not provide any checkpointing tools but has built-in support for the integration of 3rd party tools.

1

Checkpoint When 3 options:

• On Shutdown of Execd

– If possible, checkpoint, abort and migrate the job if the
corresponding execution host shuts down the execd
daemon.

• On Min CPU Interval

– Checkpoint the job periodically after it has executed for a
pre-defined CPU time interval (this interval is defined under
queue_conf).

• On Job Suspend

– Checkpoint, abort and migrate the job if the job is suspended
either through user intervention or threshold exceed.

Checkpoint Signal Unix signal to be sent to the job to initiate a checkpoint.

Reschedule Job When selected, the job will be rescheduled (ie. restarted) instead of
checkpointed when the execution host goes into unknown status.

Class Interface Name Remarks
Kernel HIBERNATOR

CRAY-CKPT

CPR

All commands used.

User APPLICATION-LEVEL

USER DEFINED

TRANSPARENT

Restart command not used.

All commands not used.

Table 1. Interface properties

2

Illustration 1 N1GE6 Checkpoint Menu

Job State Transition
Illustration 2 shows the state transition diagram for the different types of checkpointing
interfaces and when each of the 4 commands are executed.

3

Illustration 2 State diagram of the different interfaces

Berkeley Lab Checkpoint/Restart
“Berkeley Lab Checkpoint/Restart (BLCR) is a kernel module that allows you to save a
process to a file and restore the process from the file. This file is called a context file. A
context file is similar to a core file, but a context file holds enough information to continue
running the process. A context file can be created at any point in a process's execution. The
process may be resumed from that point at a later time, or even on a different workstation.”

-- Future Technologies group

Basic Usage
A basic understanding on how to use BLCR is required to follow through the remaining
sections.

Starting an application cr_run <app name>

Checkpoint and continue cr_checkpoint -f <context filename> <process id>

Checkpoint and terminate cr_checkpoint -f <context filename> --kill <process id>

Restart cr_restart <context file>

BLCR Known Limitations
1. BLCR doesn't support checkpointing of a process group yet.

2. To restart from a context file, the PID of the original process must NOT be in use.

3. To restart from a context file, the original executables and shared libraries used must
exists and contents remain the same.

As a result of limitation 2 and the fact that process IDs are not unique between nodes in a
cluster, the integration discussed below will not migrate jobs between 2 different nodes.
(Note: a little trick can be used here by checking the status of the cr_restart command within
the shell script and resubmitting the job. Find out more below.)

Integration of BLCR with N1GE6

Approach
Even though the BLCR is a kernel level checkpointing tool, its limitation on not being able to
checkpoint a process group means that using kernel interfaces for integration may not be
appropriate. The main reason is that during job restarts, the kernel interfaces restore the
application process without reprocessing the submission script. Thus the ability to only
checkpoint a single process meant that only one process within the script can be
checkpointed and during job restart, only this process is restored and the control and data
flow embedded within the shell script are lost.

As such, a simpler but workable approach is to integrate BLCR using the Application-level
Interface. The difference between the Application-level Interface and any of the kernel-level
interfaces is during job restarts, the submission scripts are re-executed and to differentiate
between an initial job run and a restarted job, N1GE6 sets the internal variable
$RESTARTED accordingly.

Now, since the submission scripts are re-executed on every restart and there is a method of
determining if the job is restarted or not, additional logic can be added into the submission
script to enable the checkpointed application to restart gracefully. (See Text 1)

Limitations
• There is only 1 binary for each submission script.

• LAM-MPI integration has not been done.

4

Crafting the checkpoint script
The provided CPR checkpoint script is used as a starting point for the BLCR checkpoint
script. The following discussion focuses on the core logic of the modified script. (See
Appendix A for full source.)

Recall from the discussion above that only one process can be checkpointed. However, since
only shell scripts are permitted to be submitted to N1GE6, N1GE6 will have knowledge of the
submission script's process id only (through the variable $job_pid). But since the submission
script is really just a wrapper for the binary, the binary is essentially a child process of the
submission script's process. So the purpose of $cpid (Text 2) is to retrieve the process id of
the binary to be checkpointed.

Crafting the migration script
The provided CPR checkpoint script is used as a starting point for the BLCR checkpoint
script. The following discussion focuses on the core logic of the modified script. (See
Appendix A for full source.)

The only difference between the checkpoint and migrate script is in line 50 and 85 (Text 3).
During job migration, the job is placed back in the pending state and can be re-scheduled by
the N1GE6 scheduler. However, since uniqueness of process id is not possible between
nodes, it is safer that migrating jobs do not migrate between nodes. Hence, line 50 ensures
that when the migrated job is re-scheduled, it will only be scheduled on the same node (Line
50). At line 85, the migrating job will be killed after it has been checkpointed (since it is
pointless for a migrating job to continue executing at this instance anymore.)

5

#!/bin/csh
if (${RESTARTED}) then
 // code to restart the application
 cr_restart ...
 ...
else
 // code to start application
 cr_run ...
 ...
endif

Text 1 Sample submission script

82 ...
83 # get the pid of the running binary
84 cpid=`pstree -p $job_pid | awk -F "(" '{ print $NF }' \
 | awk -F ")" '{ print $1 }'`
85 /usr/local/bin/cr_checkpoint -f $ckptfile --run $cpid
86 ...

Text 2 checkpoint script

50 qalter -q $QUEUE $JOB_ID
...
83 # get the pid of the running binary
84 cpid=`pstree -p $job_pid | awk -F "(" '{ print $NF }' \
 | awk -F ")" '{ print $1 }'`
85 /usr/local/bin/cr_checkpoint -f $ckptfile --kill $cpid
86 ...

Text 3 migrate script

Crafting the clean script
The purpose of this script is to clean up the process and BLCR context files, hence there is
nothing really interesting to discuss.

Setting up the checkpointing environment in N1GE6

Step 1 Create the checkpoint environment

> qconf -ackpt BLCR
ckpt_name BLCR
interface APPLICATION-LEVEL
ckpt_command /n1ge6-beta2/ckpt/my_ckpt_command $job_id \
 $job_pid $ckpt_dir
migr_command /n1ge6-beta2/ckpt/my_migration_command \
 $job_id $job_pid $ckpt_dir
restart_command none
clean_command /n1ge6-beta2/ckpt/my_clean_command $job_id \
 $job_pid $ckpt_dir
ckpt_dir /tmp
signal NONE
when xsmr

Step 2 Attach the BLCR checkpoint environment to the queue.

> qconf -mq all.q
...
...
qtype BATCH INTERACTIVE
ckpt_list BLCR
pe_list make
...
...

Conclusion
This report has detailed the checkpointing support of N1GE6 and the integration steps of
BLCR into N1GE6. With the flexibility of N1GE6, the reader should be able to integrate most
of the checkpointing tools available with some modifications to the
checkpointing/migration/restart scripts.

6

60 ...
61 # workaround for qdel failing to kill restarted jobs
62 # make sure job is really dead
63 cpid=`pstree -p $job_pid | awk -F "(" '{ print $NF }' \
 | awk -F ")" '{ print $1 }'`
64 kill -9 $cpid >> $F 2>&1
65 kill -9 $job_pid >> $F 2>&1
66 ...

Appendix A

7

#!/bin/sh

set +u
ckpt_dir=$3
if [! -f $ckpt_dir/ckpt.log]; then
 touch $ckpt_dir/ckpt.log
 chmod 666 $ckpt_dir/ckpt.log
fi
sge_root=${SGE_ROOT}
sge_cell=${SGE_CELL}
workaround to force job to restart on same queue (svd)
. $sge_root/${sge_cell:-default}/common/settings.sh

tmpdir=$ckpt_dir/ckpt.$1 # create temp dir for holding checkpoint info
mkdir -p $tmpdir
cd $tmpdir

create log file
F=~/$REQNAME.co$1
touch $F
echo ---------------------------------- >> $F 2>&1
echo `basename $0` called at `date` >> $F 2>&1
echo called by: `id` >> $F 2>&1
echo with args: $* >> $F 2>&1
echo on queue : $QUEUE >> $F 2>&1
checkpoint the job to one of two different files (i.e. ping-pong)
just in case we go down while checkpointing
currcpr=`cat currcpr`
if ["$currcpr" = "2"]; then
 currcpr=1
 prevcpr=2
else
 currcpr=2
 prevcpr=1
fi
ckptfile=context_$1.$currcpr
pid=$2
get the child process to checkpoint
echo `pstree -p $pid` >> $F 2>&1
cpid=`pstree -p $pid | awk -F "(" '{ print $NF }' | awk -F ")" '{ print $1
}'`
echo Checkpoint command: cr_checkpoint -f $ckptfile --run $cpid >> $F 2>&1
/usr/local/bin/cr_checkpoint -f $ckptfile --run $cpid
cc=$?
if [$cc -eq 0]; then
 echo $currcpr > currcpr
 if [-f context_$1.$prevcpr]; then
 echo Deleting old checkpoint file >> $F 2>&1
 # cpr -D cpr_$1.$prevcpr >> $F 2>&1
 rm -f context_$1.$prevcpr
 fi
fi

echo `date +"%D %T"` Job $1 "(pid=$cpid) checkpointed, status=$cc" >>
$ckpt_dir/ckpt.log

Text 4 blcr_checkpoint.sh

8

#!/bin/sh

set +u

ckpt_dir=$3

if [! -f $ckpt_dir/ckpt.log]; then
 touch $ckpt_dir/ckpt.log
 chmod 666 $ckpt_dir/ckpt.log
fi
sge_root=${SGE_ROOT}
sge_cell=${SGE_CELL}
workaround to force job to restart on same queue (svd)
. $sge_root/${sge_cell:-default}/common/settings.sh
qalter -q $QUEUE $JOB_ID

create temp directory for holding checkpoint info
tmpdir=$ckpt_dir/ckpt.$1
mkdir -p $tmpdir
cd $tmpdir

create log file
F=~/$REQNAME.co$1
touch $F
echo ---------------------------------- >> $F 2>&1
echo `basename $0` called at `date` >> $F 2>&1
echo called by: `id` >> $F 2>&1
echo with args: $* >> $F 2>&1

checkpoint the job to one of two different files (i.e. ping-pong)
just in case we go down while checkpointing
currcpr=`cat currcpr`
if ["$currcpr" = "2"]; then
 currcpr=1
 prevcpr=2
else
 currcpr=2
 prevcpr=1
fi
ckptfile=context_$1.$currcpr

echo Migration command: cr_checkpoint -f $ckptfile --kill $cpid >> $F 2>&1
/usr/local/bin/cr_checkpoint -f $ckptfile --kill $cpid

cc=$?
if [$cc -eq 0]; then
 echo $currcpr > currcpr
 if [-f context_$1.$prevcpr]; then
 echo Deleting old checkpoint file >> $F 2>&1
 #cpr -D cpr_$1.$prevcpr >> $F 2>&1
 rm -f context_$1.$prevcpr
 fi
fi

echo `date +"%D %T"` Job $1 "(pid=$cpid) checkpointed and killed,
status=$cc" >> $ckpt_dir/ckpt.log

Text 5 blcr_migrate.sh

9

#!/bin/sh
set +u

ckpt_dir=$3

if [! -f $ckpt_dir/ckpt.log]; then
 touch $ckpt_dir/ckpt.log
 chmod 666 $ckpt_dir/ckpt.log
fi

create temp directory for holding checkpoint info

tmpdir=$ckpt_dir/ckpt.$1
mkdir -p $tmpdir
cd $tmpdir

create log file
#F=$tmpdir/checkpoint.log
F=~/$REQNAME.co$1
touch $F

echo ---------------------------------- >> $F 2>&1
echo `basename $0` called at `date` >> $F 2>&1
echo called by: `id` >> $F 2>&1
echo with args: $* >> $F 2>&1

workaround for qdel failing to kill restarted jobs
make sure job is really dead

cpid=`pstree -p $2 | awk -F "(" '{ print $NF }' | awk -F ")" '{ print $1 }
'`

kill -9 $cpid >> $F 2>&1
kill -9 $2 >> $F 2>&1

echo `date +"%D %T"` Job $1 "(pid=$cpid) cleaned up" >> $ckpt_dir/ckpt.log

Text 6 blcr_clean.sh

#!/bin/csh

set tmpdir=${SGE_CKPT_DIR}/ckpt.${JOB_ID}
set currcpr=`cat ${tmpdir}/currcpr`
set ckptfile=${tmpdir}/context_${JOB_ID}.$currcpr

if (${RESTARTED} && -e $tmpdir) then
 echo "Restarting from $ckptfile" >> /tmp/restart.log
 /usr/local/bin/cr_restart $ckptfile
else
 /usr/local/bin/cr_run $*
endif

Text 7 Submission script

References
• N1GE6 User Manual

• N1GE6 checkpoint sample scripts

• Grid Engine Website (http://gridengine.sunsource.net/)

• Future Technologies Group (http://ftg.lbl.gov/checkpoint)

10

